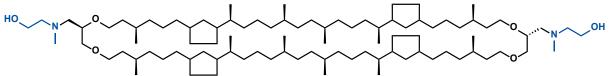


# NMEA-GDGT

## **Description:**

Modified GDGT from Sulfolobus acidocaldarius for investigational use only.

### Sample information:


| Product name                     | N-(methylethanol)-amine-GDGT                     |  |
|----------------------------------|--------------------------------------------------|--|
| Cat.#                            | 69756                                            |  |
| Physical appearance              | colorless to slightly yellow oil                 |  |
| Apparent pKa value               | 6.61                                             |  |
| Solubility in ethanol            | 80 mg/mL                                         |  |
| Solubility in <i>i</i> -propanol | 80 mg/mL                                         |  |
| Shipment                         | ambient temperature, packed under N <sub>2</sub> |  |
| Storage                          | -20 °C                                           |  |

#### Sample composition:

| Lipid component        | Chemical formula      | Purity <sup>2</sup> | Molecular<br>mass (g/mol) |
|------------------------|-----------------------|---------------------|---------------------------|
| NMEA-GDGT <sup>1</sup> | $C_{92}H_{178}N_2O_6$ | >95%                | 1408.44                   |

GDGT... glycerol dialkyl glycerol tetraether

## Structure:



## Handling information:

Recommended solvents: dissolves in all common organic solvents (e.g. diethylether, dichloromethane, chloroform, THF, *i*-propanol, DMSO...)

The compound is stored under  $N_2$  atmosphere.

For formulation experiments ethanol *absolute* or pure *i*-propanol are recommended as solvent. Note that traces of water, e.g. due to usage of ethanol 96%, lead to formation of a cloudy suspension.

To quantitatively dissolve the product in the original container it is recommended to thoroughly rinse the whole vial and cap with solvent.

<sup>&</sup>lt;sup>1</sup> The GDGT moie ty naturally occurs with 0 to 8 cyclopentane rings, resulting in minor deviations of the molecular mass.

 $<sup>^{\</sup>rm 2}$  Based on NMR